On the Reaction of Nitrilium Salts with Heterocyclic Nitrones

M. G. Hitzler, C. C. Freyhardt, and J. C. Jochims

Konstanz, Fakultät für Chemie der Universität
Received August 15th, 1995

Abstract

Nitrilium hexachloroantimonates 1a-c reactwith pyridine N -oxides $\mathbf{2 a}, \mathbf{d}, \mathbf{f}, \mathbf{j}, \mathbf{m}, \mathbf{o}$ to afford bicyclic 2,3-dihydropyridinium salts $\mathbf{5 a - p}$. The constitution of $\mathbf{5 f}$ was secured by an X-ray crystallographic analysis. Compounds 5 proved to be thermally labile ($23-82^{\circ} \mathrm{C}$) rearranging to 2 -acylamino- pyridinium salts $\mathbf{6 a}, \mathbf{f}-\mathbf{i}$ or decomposing to tars. The benz-

imidazole-3-oxide 7 reacts with nitrilium salts $\mathbf{1 a}, \mathbf{b}$ to 2 acylaminobenzimidazoles $9 \mathbf{9}, \mathbf{b}$. The experimental results as well as AM1 calculations support a mechanism for the reaction of nitrilium cations with heterocyclic nitrones, which has originally been suggested by Abramovitch [25, 26].

The dipolarophilicity of the nitrile triple bond is only moderate [1]. Electron-withdrawing substituents or Lewis acid catalysis enhance the reactivity of nitriles against 1,3 -dipoles [2-6]. Hence, it is tempting to speculate that nitrilium salts 1 , which may be regarded as especially electron deficient nitriles, should be effective dipolarophiles. Known are cycloadditions of organic azides to nitrilium salts leading to trisubstituted tetrazolium salts [7-9]. These reactions are dominated by interaction of the nitrilium LUMO with the azide HOMO [8]. Cycloadditions of the azide ion $\mathrm{N}_{3}{ }^{-}$to nitrilium ions are two-step reactions [10-12]. Recently, we reported on preparations of $1,2,4$-oxadiazolium salts by cycloaddition of nitrile oxides to nitrilium salts [13].

The 1,3-dipolar cycloaddition of nitrones to reactive nitriles constitutes a general synthesis of 2,3 -di-hydro-1,2,4-oxadiazoles [14-16]. Nitrilium salts in place of nitriles should afford 2,3-dihydro-1,2,4-oxadiazolium salts. We found that nitrones such as benzylideneaniline N -oxide react with nitrilium hexachloroantimonates 1 at low temperatures ($<-20^{\circ} \mathrm{C}$). However, only tarry mixtures of compounds were obtained [13].

On the other hand, reactions of imidoyl chlorides as well as of nitrilium hexachloroantimonates with pyridine N -oxides 2 give well defined products [1725]. For instance, Abramovitch et al. treated 2a with benzimidoyl chloride or N -phenylbenzonitrilium hexachloroantimonate $\left(\mathbf{1}, \mathrm{R}^{1}, \mathrm{R}^{2}=\mathrm{Ph}\right)$ to obtain mainly 2 -(N -benzoylanilino)pyridine. The mechanism
originally proposed for this reaction [17] was later questioned by Abramovitch and Shinkai [25], who considered a general mechanism for transformations of pyridine N oxides with nitrilium salts, isocyanates, benzyne, or acetylenes etc: „Indeed, it is tempting to rationalize most of the results on the basis of a general principle, namely that fused bicyclo-1,2-dihydropyridine-1-oxides (e.g.4) are less stable than their 2,3-dihydro counterparts (e.g. 5) and rearrange readily to these". Since neither intermediate 4 nor 5 was isolated the question of the mechanism remained open.

Cycloadditions of pyridine N -oxides to isocyanates have been studied by Hisano et al. [26-30]. These authors isolated several bicyclic 2,3-dihydropyridines and determined their constitutions by X-ray crystallographic analyses [26].

Here, we report that pyridine N -oxides 2 react with nitrilium salts 1 under much milder conditions than with imidoyl chlorides [17-20]. No side products resulting from reactions of the nucleophilic counterion Cl^{-}were formed and the salts $5 \mathbf{a}-\mathbf{p}$, which seem to be representatives of a new class of compounds, were isolated in good yields (Scheme 1). Noteworthy, also 4-nitropyridine oxide 20 reacted smoothly with nitrilium salts, in contrast to a statement of Abramovitch [17, 20]. With 2- or 3-substituted pyridine oxides formation of two isomeric products 5 should be expected.

In fact, from β-picoline $\mathbf{2 f}$ and $\mathbf{1 a}$ a mixture of $5 \mathbf{5}, \mathbf{g}$ was formed, which could be separated. The constitution of $\mathbf{5 f}$ was secured by an X-ray structural analysis (Figure 1, Table 1). The structural data may be compared with those for the corresponding ring system formed by cycloaddi-

Scheme 1

Table 1 Selected bond lengths (pm), bond angles (deg), and torsional angles (deg) of the cation 5f [34]

O-C1	$129.1(5)$	C7-C1-N1	$126.2(4)$	O-C1-N1-C2	$-5.3(5)$
C1-N1	$128.8(5)$	C8-N1-C2	$122.0(4)$	O-C1-N1-C8	$178.9(4)$
N1-C2	$146.9(5)$	N1-C2-N2	$108.0(3)$	O-C6-C5-C4	$-107.5(4)$
C2-C6	$153.3(4)$	C2-N2-C3	$116.6(3)$	O-C6-C2-N1	$-17.1(3)$
C6-O	$149.1(4)$	N2-C3-C4	$126.2(4)$	O-C6-C2-N2	$101.3(3)$
C1-C7	$147.5(5)$	C3-C4-C5	$121.3(4)$	C1-N1-C2-C6	$14.5(4)$
N1-C8	$147.5(5)$	C4-C5-C6	$120.6(4)$	C1-N1-C2-N2	$-112.6(3)$
C2-N2	$145.1(4)$	C5-C6-C2	$113.1(3)$	C1-O-C6-C2	$15.6(3)$
N2-C3	$127.1(5)$	C5-C6-C9	$113.1(3)$	C1-O-C6-C5	$135.0(3)$
C3-C4	$144.3(6)$	C5-C6-O	$107.4(3)$	C1-O-C6-C9	$-103.5(3)$
C4-C5	$130.7(5)$	C6-C2-N2	$120.5(3)$	N1-C2-N2-C3	$127.3(4)$
C5-C6	$149.2(5)$	C9-C6-O	$106.5(3)$	N1-C2-C6-C5	$-132.4(3)$
C6-C9	$150.4(4)$	C9-C6-C2	$113.2(3)$	N1-C2-C6-C9	$97.3(3)$
O-C1-N1	$114.8(3)$	N1-C1-O-C6	$-7.2(4)$	C6-O-C1-C7	$173.2(3)$
C1-N1-C2	$110.7(3)$	C2-N2-C3-C4	$-1.8(6)$	N2-C2-N1-C8	$63.4(4)$
N1-C2-C6	$100.7(3)$	C2-C6-C5-C4	$4.9(5)$	N2-C3-C4-C5	$-7.6(6)$
C2-C6-O	$102.5(2)$	C2-N1-C1-C7	$174.3(3)$	N2-C2-C6-C5	$-14.0(4)$
C6-O-C1	$108.0(3)$	C6-C2-N2-C3	$12.7(5)$	N2-C2-C6-C9	$-144.4(3)$
O-C1-C7	$119.0(4)$	C6-C5-C4-C3	$5.2(6)$	C4-C5-C6-C9	$135.3(4)$
C1-N1-C8	$127.1(4)$	C6-C2-N1-C8	$-169.4(4)$	C7-C1-N1-C8	$-1.5(7)$

Fig. 1 Plot of the cation $\mathbf{5 f}$
tion of arylisocyanates to pyridine N -oxides [26]. On the other hand, the bulkier nitrilium salt 1b afforded only $\mathbf{5 h}$. Similarly, from α-picoline and $\mathbf{1 b}, \mathbf{c}$ only the less crowded isomers $5 \mathbf{5}$, e were formed.

All compounds 5 turned out to be thermally labile. Slowly at room temperature and faster in boiling 1,2dichloroethane or acetonitrile 5a, f-i were transformed into the N -acylaminopyridinium salts 6 . However, the other compounds 5 decomposed to tarry mixtures showing only minor ${ }^{1} \mathrm{H}$ NMR signals for 2-amidopyridinium salts 6. Thus, the reaction of pyridine N -oxides with nitrilium salts cannot be regarded as a general method for the preparation of 2-acylaminopyridines [17, 25]. The limitations are not caused by lack of basicity of the N -oxide 2 but by instabilities of 5 . On the other hand, the formation of 2,3-dihydropyridinium salts $\mathbf{5}$ from

Fig. 2 AM1-calculated heats of formation for the reaction of the cation $\mathbf{1 a}$ with 2a relative to $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}=617 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for 6 a
nitrilium salts $\mathbf{1}$ and pyridine N -oxides $\mathbf{2}$ seems to be a general reaction.

The bicyclic compounds show characteristic ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. The following couplings were observed: H3a-H7a ca. $11 \mathrm{~Hz}, \mathrm{H} 7-\mathrm{H} 7 \mathrm{a}$ ca. $5 \mathrm{~Hz}, \mathrm{H} 6-\mathrm{H} 7$ ca. $10 \mathrm{~Hz}, \mathrm{H} 5-\mathrm{H} 6 \mathrm{ca} .3 \mathrm{~Hz}$. The assignments of C3a and C 7 a are based on the assumption that C3a shows triplets for the ${ }^{3} J_{\mathrm{CH}}$ couplings (5 to 9 Hz), while C 7 a gives doublets.

Our experimental results and AM1 calculations are only in accord with Abramovitch's final mechanism [25] represented in Scheme 1. The reaction starts with a non concerted attack of the N -oxide on the nitrilium ion to give - stereochemically controlled [31-33] - a reactive intermediate 4 , which undergoes fast 1,5 -sigmatropic rearrangement to the stable salt 5. Rearomatization of 5 (and not of 4) furnishes the final product 6. It is this chance of 4 to escape decomposition by rearrangement to 5 , which renders possible isolation of well defined products from the reaction of nitrilium salts with 2 but not with simple nitrones like benzylideneaniline N -oxide.

An exception to this rule seems to be the reaction of the nitrilium salts $\mathbf{1 a}, \mathbf{b}$ with the nitrone 7 . High yields of the 2 -acylamino benzimidazoles $9 \mathbf{a}, \mathbf{b}$ were obtained, even though the intermediates 8 cannot undergo a stabilizing 1,5 -sigmatropic rearrangement. Similar results have been reported by Abramovitch et al. [17, 22]. The mechanism shown in Scheme 1 may account for these reactions.

In Figure 2 the results of AM1 calculations [35, 36] for the reaction of the nitrilium cation 1a with pyridine N -oxide are shown. The reaction to 6 a was calculated to be exothermic by no less than $276 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The formation of 4a occurs stepwise via intermediates 3a and its more stable (E)-isomer. Higher activation enthalpies are required for concerted two-stage or synchronous cycloadditions of the nitrilium ion 1a to 2a. According to the calculations the formation of 4 a from 1a and 2a is endothermic. With a small activation enthalpy of $40 \mathrm{~kJ} \mathrm{~mol}^{-1}$ the reactive intermediate 4a rearranged to the much more stable cation 5a, which on its part needed a high activation enthalpy to be transformed into the final product 6a. These calculations are in qualitative accord with MINDO/2' and MINDO/3 calculations on related reactions of isocyanates with pyridine N -oxides [24, 30].
This work was supported by the Fonds der Chemischen Industrie. We would like to thank Mr. S. Herzberger for technical assistance

Experimental

All solvents were dried by standard methods. All experiments were carried out with exclusion of moisture. The melting points
are uncorrected. Satisfactory microanalyses were obtained: $\mathrm{C} \pm=0.35 \% ; \mathrm{H} \pm 0.29 \% ; \mathrm{N} \pm 0.30 \%$. NMR spectra were taken with Bruker AC 250 and WM 250 spectrometers; internal standard TMS, δ-scale [ppm], J [Hz]; 295 K . Abbrevations: ddt doublet of doublets of triplets; dt doublet of triplets. IR spectra were taken with a Perkin-Elmer FTIR 1600 spectrometer, $\tilde{\mathrm{v}}$ in cm^{-1}.

General procedures for the reactions of the nitrilium salts (1) with the pyridine N -oxides (2):

Method A: A solution of $2(10 \mathrm{mmol})$ in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ (10 ml) was added at $23^{\circ} \mathrm{C}$ to a stirred suspension of $\mathbf{1}(10$ $\mathrm{mmol})$ in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(10 \mathrm{ml})$. Stirring was continued for 20 min , and the product was precipitated by slow addition of $\mathrm{Et}_{2} \mathrm{O}$ (40 ml).

Method B: A suspension of $2(10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20$ ml) was added at $0^{\circ} \mathrm{C}$ to a stirred suspension of $\mathbf{1}(10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$. After stirring at $0^{\circ} \mathrm{C}$ for 45 min the product was precipitated at $0^{\circ} \mathrm{C}$ by slow addition of $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$.

Method C: A suspension of $2(10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20$ $\mathrm{ml})$ was added at $0^{\circ} \mathrm{C}$ to a stirred suspension of $\mathbf{1}(10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$. After stirring at $0{ }^{\circ} \mathrm{C}$ for 10 min and at $23^{\circ} \mathrm{C}$ for another 20 min the product was precipitated by slow addition of $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$.

3a,7a-Dihydro-2,3-dimethyloxazolo[4,5-b]pyridin-3-ium hexachloroantimonate (5a)

From 1a [37] ($3.91 \mathrm{~g}, 10 \mathrm{mmol}$) and $2 \mathrm{a}(0.95 \mathrm{~g}, 10 \mathrm{mmol})$; method A. Yield: $4.28 \mathrm{~g}(88 \%)$; reprecipitation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{ml}) / \mathrm{MeCN}(1 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(25 \mathrm{ml})$ afforded a yellow-brown powder ($3.76 \mathrm{~g}, 77 \%$); m.p. $109-111^{\circ} \mathrm{C}$ (dec.).
$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{Cl}_{16} \mathrm{~N}_{2} \mathrm{OSb}(485.7) .-{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}$): 2.42, $3.46\left(\mathrm{CH}_{3}\right), 5.67(\mathrm{dd}, J=4.7,11.7, \mathrm{H} 7 \mathrm{a}), 5.99$ (br, d, $J=11.7$, H3a), 6.44 (dd, $J=3.1,9.8, \mathrm{H} 6$), 6.58 (ddt, $J=1.1,4.7,9.8$, H 7), 8.02 (br, m, $J \approx 3.1, \mathrm{H} 5$). $-{ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}$): 13.9, $33.2\left(\mathrm{CH}_{3}\right), 75.7(\mathrm{C} 3 \mathrm{a}, 7 \mathrm{a}), 125.0,125.5(\mathrm{C} 6, \mathrm{C} 7), 157.3$ (C5), 177.0 (C2). - IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$): 1600, 1655, 1670 (sh).

3a,7a-Dihydro-3-isopropyl-2-methyloxazolo[4,5-b]pyridin-3-ium hexachloroantimonate (5b)

From 1b [38] ($4.19 \mathrm{~g}, 10 \mathrm{mmol}$) and 2a ($0.95 \mathrm{~g}, 10 \mathrm{mmol}$); method A. Yield: $4.78 \mathrm{~g}(90 \%)$; reprecipitation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(15 \mathrm{ml}) / \mathrm{MeCN}(5 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(35 \mathrm{ml})$ afforded a colorless powder ($3.83 \mathrm{~g}, 72 \%$); m.p. $136-137^{\circ} \mathrm{C}$ (dec.).
$\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{OSb}$ (513.7). - ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}$): 1.47 (d, $J=6.8$), 1.62, (d, $J=6.7$), $2.47\left(\mathrm{CH}_{3}\right), 4.42$ (sept, $J=6.8$, CH), 5.58 (dd, $J=4.8,11.6, \mathrm{H} 7 \mathrm{a}$), 6.22 (br, dt, $J=0.9,11.6$, H 3 a), 6.43 (dd, $J=3.2,9.7, \mathrm{H} 6$), 6.61 (ddt, $J=1.3,4.7,9.8 \mathrm{H} 7$), 7.98 (br, m, H5). - ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}$): 14.5, 19.3, $22.2\left(\mathrm{CH}_{3}\right), 53.3(\mathrm{CH}), 74.3,75.1(\mathrm{C} 3 \mathrm{a}, \mathrm{C} 7 \mathrm{a}), 125.0,125.4$ (C6, C7), 156.7 (C5), 176.8 (C2). - IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$): 1600 (sh), 1620, 1660 (sh).

3a,7a-Dihydro-3-isopropyl-2-phenyloxazolo[4,5-blpyridin-3-ium hexachloroantimonate (5c)

From 1c [38] ($4.81 \mathrm{~g}, 10 \mathrm{mmol}$) and $\mathbf{2 a}(0.95 \mathrm{~g}, 10 \mathrm{mmol})$; method A. Yield: $5.24 \mathrm{~g}(91 \%)$; reprecipitation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{ml}) / \mathrm{MeCN}(1 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(80 \mathrm{ml})$ afforded a colorless pow-
$\operatorname{der}(4.95 \mathrm{~g}, 86 \%) ;$ m.p. $128-131^{\circ} \mathrm{C}$.
$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{OSb}(575.8) .-{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}\right): 1.61(\mathrm{~d}$, $J=6.6), 1.68(\mathrm{~d}, J=6.7)\left(\mathrm{CH}_{3}\right), 4.61(\mathrm{sept}, J=6.6)(\mathrm{CH}), 5.84$ (dd, $J=4.9,11.4$, H7a), 6.48 (m, H3a, H6), 6.69 (ddt, $J=1.3$, 4.8, 9.8, H7), 8.06 (m, H5), 7.68-7.91(aryl). - ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}$): $20.2\left({ }^{1} J=129\right), 23.3\left({ }^{1} J=129\right)\left(\mathrm{CH}_{3}\right), 54.6$ (${ }^{1} J=144, \mathrm{CH}$), 74.5 (ddt, $\left.J=164.3,15.6,4.8, \mathrm{C} 3 \mathrm{a}\right), 75.3$ (dd, $J=165.7,8.8, \mathrm{C} 7 \mathrm{a}), 121.2(\mathrm{t}, J=8.2, i-\mathrm{C}), 125.0\left({ }^{1} J=176.5\right.$, C6), 125.5 (${ }^{1} J=176.3,{ }^{3} J=9.8, \mathrm{C} 7$), 130.6 (dd, $J=166.5,7.4$, m-C), 131.2 (dt, $J=165.8,6.8, o-\mathrm{C}), 136.8$ (dt, $J=164.4,7.3$, $p-\mathrm{C}), 157.0$ (${ }^{1} J=185, \mathrm{C} 5$), 172.9 (C 2 , gated decoupling experiment). - IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 1575,1605$.

3a,7a-Dihydro-3-isopropyl-2,5-dimethyloxazolo[4,5-b]

 pyridin-3-ium hexachloroantimonate (5d)From 1b ($4.19 \mathrm{~g}, 10 \mathrm{mmol}$) and $2 \mathrm{~d}(1.09 \mathrm{~g}, 10 \mathrm{mmol})$; method B. Yield: $4.68 \mathrm{~g}(89 \%)$ of a colorless powder, which soon decomposed in solution; m.p. $111-116^{\circ} \mathrm{C}$ (dec.).
$\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{OSb}(527.7) .-{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2} / \mathrm{TMS}, 273 \mathrm{~K}$): 1.57 (d, $J=6.8$), 1.77 ($\mathrm{d}, J=6.7$), $2.22(\mathrm{~d}, J=2.0), 2.64\left(\mathrm{CH}_{3}\right)$, 4.43 (sept, $J=6.8, \mathrm{CH}), 5.71(\mathrm{dd}, J=4.8,11.0, \mathrm{H} 7 \mathrm{a}), 6.26$ (br, $J=10.9, \mathrm{H} 3 \mathrm{a}), 6.42$ (d, $J=9.8, \mathrm{H} 6$), 6.61 (dd, $J=4.8,9.8, \mathrm{H} 7$). $-{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{2} \mathrm{Cl}_{2} / \mathrm{TMS}, 273 \mathrm{~K}\right): 14.5,19.3,22.8,26.8$ $\left(\mathrm{CH}_{3}\right), 53.4(\mathrm{CH}), 73.7,74.5(\mathrm{C} 3 \mathrm{a}, \mathrm{C} 7 \mathrm{a}), 124.1,128.1(\mathrm{C} 6$, C7), 163.6, $175.4(\mathrm{C} 5, \mathrm{C} 2)$. - IR ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 1608,1631,1674$.

3a,7a-Dihydro-3-isopropyl-5-methyl-2-phenyloxazolo[4,5-b] pyridin-3-ium hexachloroantimonate (5e)

From $1 \mathbf{c}(4.81 \mathrm{~g}, 10 \mathrm{mmol})$ and $\mathbf{2 d}(1.09 \mathrm{~g}, 10 \mathrm{mmol})$; method B. Yield: $5.25 \mathrm{~g}(89 \%)$ of a colorless powder, which soon decomposed in solution; m.p. $88-93^{\circ} \mathrm{C}$ (dec.).
$\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{OSb}(589.8) .-{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}, 263 \mathrm{~K}$): $1.60(\mathrm{~d}, J=6.6), 1.71(\mathrm{~d}, J=6.7), 2.21(\mathrm{~d}, J=1.9)\left(\mathrm{CH}_{3}\right), 4.56$ ($\mathrm{sept}, J=6.6, \mathrm{CH}), 5.78(\mathrm{dd}, J=4.8,11.3, \mathrm{H} 7 \mathrm{a}), 6.43(\mathrm{~m}, \mathrm{H} 3 \mathrm{a}$, H6), 6.66 (dd, $J=4.8,9.8$; H7). $-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}\right.$, $263 \mathrm{~K}): 20.0,23.5,26.9\left(\mathrm{CH}_{3}\right), 54.1(\mathrm{CH}), 74.0,74.6(\mathrm{C} 3 \mathrm{a}$, C7a), 163.7, $172.0(\mathrm{C} 5, \mathrm{C} 2)$. - IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 1576,1602$, 1616 (sh), 1671.

3a,7a-Dihydro-2,3,7a-trimethyloxazolo[4,5-b]pyridin-3-ium hexachloroantimonate (5f)

From $1 \mathrm{la}(3.91 \mathrm{~g}, 10 \mathrm{mmol})$ and $\mathbf{2 f}(1.09 \mathrm{~g}, 10 \mathrm{mmol})$; method C.Yield: $2.80 \mathrm{~g}(56 \%)$; reprecipitation at $0{ }^{\circ} \mathrm{C}$ from MeCN $(20 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$ afforded a colorless powder $(2.22 \mathrm{~g}$, 44%); m.p. $178-183^{\circ} \mathrm{C}$ (dec.). Crystals suitable for the X-ray structural analysis were obtained by slow crystallization at $-15^{\circ} \mathrm{C}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeCN}$.
$\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{OSb}(499.7)$. - ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}$): 1.73, $2.40,3.45\left(\mathrm{CH}_{3}\right), 5.72$ (br, H3a), 6.41 (m, H6, H7), 8.03 (br, m, H5). - ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}$): 14.2, 26.9, $33.4\left(\mathrm{CH}_{3}\right), 81.1,85.1(\mathrm{C} 3 \mathrm{a}, \mathrm{C} 7 \mathrm{a}), 123.5,129.9(\mathrm{C} 6, \mathrm{C} 7)$, 157.5 (C5), 176.3 (C2). - IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$): 1602, 1651, 1670.

X-Ray diffraction analysis of $5 \mathbf{5}$ [34]

$\left[\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}\right] \mathrm{SbCl}_{6}$, crystal size $0.2 \times 0.2 \times 0.3 \mathrm{~mm}^{3}$, monoclinic, space group $P 2_{I} / \mathrm{n}, Z=4, a=1022.2(1), b=1118.5(1)$, $c=1540.0(2) \mathrm{pm}, \beta=100.6(1)^{\circ}, V=1730.9(3) \cdot 10^{6} \mathrm{pm}^{3}, d_{\text {calc }}$ $=1.92 \mathrm{M} \mathrm{g} \mathrm{m}^{-3}, T=293 \mathrm{~K}, \mu_{\mathrm{Mo}-K \alpha}=25.12 \mathrm{~cm}^{-1}, \omega / 2 \mathrm{~T}$-scan,
$2.22 \leq \mathrm{T} \leq 24.96^{\circ}$, 3207 collected reflections, 3026 independent reflections, 2232 observed reflections $[I>2 \sigma(I)]$. The cell constants and the intensities of the reflections were measured on an Enraf-Nonius CAD4 diffractometer with a graphite monochromator, $\lambda_{\mathrm{Mo}-\mathrm{K} \mathrm{\alpha}}=71.073 \mathrm{pm}$. The structure was solved by direct methods using the program SHELXL93. The hydrogen atoms were fixed on calculated positions. The anisotropic refinement led to agreement factors $R_{1}=0.025$ [$I>2 \sigma(I)$ (observed reflections), $R_{2}=0.044$ (all reflections).

3a,7a-Dihydro-2,3,6-trimethyloxazolo[4,5-b]pyridin-3-ium hexachloroantimonate (5g)

On addition of $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$ to the mother liquor of the first precipitation of $5 \mathbf{f}$ a yellow powder ($5 \mathrm{~g}, 1.48 \mathrm{~g}, \mathbf{3 0} \%$) precipitated. Reprecipitation at $0^{\circ} \mathrm{C}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml}) /$ $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{ml})$ afforded a pale yellow powder ($1.18 \mathrm{~g}, 24 \%$); m.p. $84-87^{\circ} \mathrm{C}$ (dec.).
$\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{OSb}(499.7)$. - ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}, 263 \mathrm{~K}$): 2.03 (t, J=1.6), 2.40, $3.46\left(\mathrm{CH}_{3}\right), 5.65$ (m, cpld. to $2.03, J=5.1$, $11.3, \mathrm{H} 7 \mathrm{a}$), 5.91 (br, d, $J=11.3, \mathrm{H} 3 \mathrm{a}$), 6.29 (m, cpld. to 2.03, $5.65, \mathrm{H} 7), 7.89$ (m, $J=2.1, \mathrm{H} 5) .-{ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}$, $263 \mathrm{~K}): 13.9,19.8,33.2\left(\mathrm{CH}_{3}\right), 75.3,76.8(\mathrm{C} 3 \mathrm{a}, \mathrm{C} 7 \mathrm{a}), 118.8$, 134.8 (C7, C6), 160.4 (C5), $176.9(\mathrm{C} 2) .-\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 1608$, 1652.

3a,7a-Dihydro-3-isopropyl-2,6-dimethyloxazolo[4,5-b]py-ridin-3-ium hexachloroantimonate (5h)

From $1 \mathbf{b}(4.19 \mathrm{~g}, 10 \mathrm{mmol})$ and $2 f(1.09 \mathrm{~g}, 10 \mathrm{mmol})$; method C. Precipiation with $\mathrm{Et}_{2} \mathrm{O}$ afforded an oil, which slowly solidified on stirring. Yield: $4.74 \mathrm{~g}(90 \%)$; reprecipitation at $0^{\circ} \mathrm{C}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$ afforded a colorless powder ($4.48 \mathrm{~g}, 85 \%$); m.p. $125-126^{\circ} \mathrm{C}$.
$\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{OSb}(527.7) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}, 263 \mathrm{~K}\right)$: $1.46(\mathrm{~d}, J=6.8), 1.61(\mathrm{~d}, J=6.7), 2.02(\mathrm{t}, J=1.4), 2.45\left(\mathrm{CH}_{3}\right)$, 4.40 (sept, $J=6.7, \mathrm{CH}$), 5.54 (dd, $J=5.1,11.1, \mathrm{H} 7 \mathrm{a}$), 6.13 (br, (d, $J=11.0, \mathrm{H} 3 \mathrm{a}), 6.30(\mathrm{~m}, \mathrm{H} 7), 7.86(\mathrm{t}, J=2.2, \mathrm{H} 5) .-{ }^{13} \mathrm{C}$ NMR (CD $\left.{ }_{3} \mathrm{CN} / \mathrm{TMS}, 263 \mathrm{~K}\right): 14.5,19.3,19.8,22.3\left(\mathrm{CH}_{3}\right)$, 52.9 (CH), 73.7, 76.3 (C3a, C7a), 118.8, 134.6(C7, C6), 160.1 (C5), $176.7(\mathrm{C} 2) .-\operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 1604,1628$.

3a,7a-Dihydro-3-isopropyl-6-methyl-2-phenyloxazolo[4, 5-blpyridin-3-ium hexachloroantimonate (5i)

From $1 \mathbf{c}(4.81 \mathrm{~g}, 10 \mathrm{mmol})$ and $\mathbf{2 f}(1.09 \mathrm{~g}, 10 \mathrm{mmol})$; method C. Yield: $5.34 \mathrm{~g}(91 \%)$; reprecipitation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml}) /$ $\mathrm{MeCN}(1 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$ afforded a colorless powder ($4.98 \mathrm{~g}, 84 \%$); m.p. $140-142^{\circ} \mathrm{C}$.
$\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{OSb}(589.8) .-{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}, 263 \mathrm{~K}\right)$: $1.59(\mathrm{~d}, J=6.5), 1.70(\mathrm{~d}, J=6.7), 2.05(\mathrm{t}, J=1.5)\left(\mathrm{CH}_{3}\right), 4.60$ (sept, $J=6.7, \mathrm{CH}$), 5.81 (m, cpld. to $2.05, \mathrm{H} 7 \mathrm{a}$), 6.37 (m, cpld. to $2.05, \mathrm{H} 3 \mathrm{a}, \mathrm{H} 7$), 7.93 (m, $J=1.4, \mathrm{H} 5$), 7.69-7.89 (phenyl). $-{ }^{13} \mathrm{C}$ NMR (CD $\left.{ }_{3} \mathrm{CN} / \mathrm{TMS}, 263 \mathrm{~K}\right): 19.9,20.2,23.4\left(\mathrm{CH}_{3}\right)$, 54.3 (CH), 73.9, 76.5 (C3a, C7a), 118.7, 121.2, 130.6, 131.3, 134.8, 136.8 (C7, C6, phenyl), 160.4 (C5), 172.7 (C2). - IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 1575,1592,1610$.

7-Chloro-3a,7a-dihydro-2,3-dimethyloxazolo[4,5-b]pyridin-
3-ium hexachloroantimonate ($\mathbf{5 j}$)
From $1 \mathbf{1 a}(3.91 \mathrm{~g}, 10 \mathrm{mmol})$ and $\mathbf{2 j}(1.30 \mathrm{~g}, 10 \mathrm{mmol})$; method B. Yield: $4.80 \mathrm{~g}(92 \%)$; reprecipitation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml}) /$
$\mathrm{MeCN}(8 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(200 \mathrm{ml})$ afforded a pale yellow powder ($4.04 \mathrm{~g}, 78 \%$); m.p. $111-113^{\circ} \mathrm{C}$ (dec.).
$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{Cl}_{7} \mathrm{~N}_{2} \mathrm{OSb}$ (520.1). - ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}$): 2.46, $3.48\left(\mathrm{CH}_{3}\right), 5.66(\mathrm{~d}, J=11.7, \mathrm{H} 7 \mathrm{a}), 6.17$ (br, m, $J=11.7$, H3a), 6.64 (d, J=3.7, H6), 7.92 (dd, 2.4, 3.8, H5). - ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}\right): 14.0,33.7\left(\mathrm{CH}_{3}\right), 79.1,79.3(\mathrm{C} 3 \mathrm{a}, \mathrm{C} 7 \mathrm{a})$, $123.5,135.3(\mathrm{C}, \mathrm{C} 7), 156.0(\mathrm{C} 5), 177.0(\mathrm{C} 2) .-\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 1590, 1655, 1669.

7-Chloro-3a,7a-dihydro-3-isopropyl-2-methyloxazolo[4,5-b] pyridin-3-ium hexachloroantimonate (5k)

From $1 \mathrm{~b}(4.19 \mathrm{~g}, 10 \mathrm{mmol})$ and $\mathbf{2 j}(1.30 \mathrm{~g}, 10 \mathrm{mmol})$; method B. Yield: $5.16 \mathrm{~g}(94 \%)$; reprecipitation at $0^{\circ} \mathrm{C}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(40 \mathrm{ml}) / \mathrm{MeCN}(20 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(300 \mathrm{ml})$ afforded a colorless powder ($4.12 \mathrm{~g}, 75 \%$); m.p. $126-127^{\circ} \mathrm{C}$ (dec.).
$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{Cl}_{7} \mathrm{~N}_{2} \mathrm{OSb}(548.2) .-{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}, 263 \mathrm{~K}\right)$: $1.44(\mathrm{~d}, J=6.8), 1.61(\mathrm{~d}, J=6.7), 2.48\left(\mathrm{CH}_{3}\right), 4.43(\mathrm{sept}, J=6.7$, CH), 5.57 (d, $J=11.7, \mathrm{H} 7 \mathrm{a}), 6.33$ (dd, $J \approx 2,11.7, \mathrm{H} 3 \mathrm{a}), 6.65$ (d, $J=3.7, \mathrm{H} 6$), 7.88 (dd, $J=2.4,3.7, \mathrm{H} 5$). $-{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN} /\right.$ TMS, 263 K$): 14.6,19.0,22.0\left(\mathrm{CH}_{3}\right) 53.7(\mathrm{CH}), 77.4,78.6$ (C3a, C7a), 123.3, 135.4 (C6,C7), 155.4 C5, 176.7 (C2; at $263 \mathrm{~K})$. - IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$): 1587, 1631, 1664.

7-Chloro-3a,7a-dihydro-3-isopropyl-2-phenyloxazolo[4,5-b] pyridin-3-ium hexachloroantimonate (51)

From $1 \mathbf{c}(4.81 \mathrm{~g}, 10 \mathrm{mmol})$ and $\mathbf{2 j}(1.30 \mathrm{~g}, 10 \mathrm{mmol})$; method B. Yield: $5.16 \mathrm{~g}(85 \%)$; reprecipitation at $0^{\circ} \mathrm{C}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(40 \mathrm{ml}) / \mathrm{MeCN}(8 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(200 \mathrm{ml})$ afforded a colorless powder ($4.44 \mathrm{~g}, 73 \%$); m.p. $120-122^{\circ} \mathrm{C}$.
$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{Cl}_{7} \mathrm{~N}_{2} \mathrm{OSb}(610.2) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}, 263 \mathrm{~K}\right)$: $1.60(\mathrm{~d}, J=6.6), 1.68\left(\mathrm{~d}, J=6.7, \mathrm{CH}_{3}\right), 4.61$ (sept, $J=6.6$) (CH), 5.83 (d, $J=11.9, \mathrm{H} 7 \mathrm{a}$), 6.58 (dd, $J=2.5,11.9, \mathrm{H} 3 \mathrm{a}$), 6.69 (d, J=3.7, H6), 7.70-7.97 (m, aryl, H5). - ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}, 263 \mathrm{~K}$): 19.9, $23.3\left(\mathrm{CH}_{3}\right), 55.0(\mathrm{CH}), 77.6$, 78.7 (C3a, C7a), 120.9, 123.4, 130.7, 131.5, 135.3, 137.1 (aryl, C6, C7), 155.6 (C5), $172.3(\mathrm{C} 2) .-\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 1577,1605$, 1663.

7-Cyano-3a,7a-dihydro-2,3-dimethyloxazolo[4,5-b]pyridin-3-ium hexachloroantimonate (5m)

From $1 \mathbf{1 a}(3.91 \mathrm{~g}, 10 \mathrm{mmol})$ and $2 \mathrm{~m}(1.20 \mathrm{~g}, 10 \mathrm{mmol})$; method B. The oily precipitate was stirred at $0^{\circ} \mathrm{C}$ for 1 h in $\mathrm{Et}_{2} \mathrm{O}(100$ $\mathrm{ml})$. The solvent was removed and the residue was again stirred at $0^{\circ} \mathrm{C}$ for 1 h in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$. Decantation, drying of the residue, and stirring the resulting foam at $0^{\circ} \mathrm{C}$ for 1 h in pentane (100 ml) afforded a pale yellow powder ($5.00 \mathrm{~g}, 98 \%$); m.p. $65-75^{\circ} \mathrm{C}$ (dec.).
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{Cl}_{6} \mathrm{~N}_{3} \mathrm{OSb}(510.7) .-{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}, 263 \mathrm{~K}$): 2.46, $3.47\left(\mathrm{CH}_{3}\right), 5.75$ (d, $\left.J=11.8, \mathrm{H} 7 \mathrm{a}\right), 6.19$ (br, d, $J=11.8$, H3a), 7.11 ($\mathrm{d}, J=3.3, \mathrm{H} 6$), 8.21 (m, H5). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN} /\right.$ TMS, 263 K): 14.0, $33.4\left(\mathrm{CH}_{3}\right), 73.3,76.3(\mathrm{C} 3 \mathrm{a}, \mathrm{C} 7 \mathrm{a}), 110.7$, 115.8 (CN, C7), 134.8 (C6), 155.6 (C5), 177.2 (C2). - IR (nujol): 1594, 1651,1667.

7-Cyano-3a,7a-dihydro-3-isopropyl-2-phenyloxazolo[4,5-b] pyridin-3-ium hexachloroantimonate (5n)

From 1c ($4.81 \mathrm{~g}, 10 \mathrm{mmol}$) and $2 \mathrm{~m}(1.20 \mathrm{~g}, 10 \mathrm{mmol})$ as
described for 5 m . Yield: $5.52 \mathrm{~g}(92 \%)$ of a colorless powder; m.p. $108-110^{\circ} \mathrm{C}$ (dec.).
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{Cl}_{6} \mathrm{~N}_{3} \mathrm{OSb}(600.8) .{ }^{-1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}$): 1.61(d, $J=6.6), 1.66(\mathrm{~d}, J=6.8)\left(\mathrm{CH}_{3}\right), 4.65(\mathrm{sept}, J=6.7, \mathrm{CH}), 5.90$ (d, $J=11.7, \mathrm{H} 7 \mathrm{a}), 6.60(\mathrm{dd}, J=2.6,11.7, \mathrm{H} 3 \mathrm{a}), 7.13(\mathrm{~d}, J=3.4$, H6), 8.23 (t, $J=3.0, \mathrm{H} 5$), $7.71-7.94$ (phenyl). $-{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}\right): 20.0,23.2\left(\mathrm{CH}_{3}\right), 55.3(\mathrm{CH}), 72.8,75.2(\mathrm{C} 3 \mathrm{a}$, C7a), 110.8, 115.8 (CN, C7), 120.7, 130.8, 131.5, 134.8, 137.4 (C6, phenyl), 155.3 (C5), $172.6(\mathrm{C} 2)$. $-\operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 1576, 1603, 1658.

3a,7a-Dihydro-2,3-dimethyl-7-nitrooxazolo[4,5-bJpyridin-3ium hexachloroantimonate (50)

From $1 \mathbf{1 a}(3.91 \mathrm{~g}, 10 \mathrm{mmol})$ and $20(1.40 \mathrm{~g}, 10 \mathrm{mmol})$; method B. After stirring at $0^{\circ} \mathrm{C}$ for $45 \mathrm{~min} \mathrm{MeCN}(8 \mathrm{ml})$ was added to the viscous brown product. Centrifuging from an impurity and slow addition of $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ afforded an oil, which was stirred at $0^{\circ} \mathrm{C}$ in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$ for 1 h . Decantation and drying of the residue afforded a yellow solid foam ($4.14 \mathrm{~g}, 78 \%$); m.p. $110-120^{\circ} \mathrm{C}$ (dec.).
$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{Cl}_{6} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Sb}(530.7) .-{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}, 263 \mathrm{~K}$): $2.49,3.56\left(\mathrm{CH}_{3}\right), 6.14(\mathrm{~d}, J=11.3, \mathrm{H} 7 \mathrm{a}), 6.39(\mathrm{br}, \mathrm{d}, J=11.3$, $\mathrm{H} 3 \mathrm{a}), 7.55(\mathrm{~d}, J=3.5, \mathrm{H} 6), 8.38(\mathrm{dd}, J=2.6,3.5, \mathrm{H} 5) .-{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}, 263 \mathrm{~K}\right): 14.1,34.0\left(\mathrm{CH}_{3}\right), 72.6,80.7$ (C3a, C7a), 124.5 (C6), 145.4 (C7), 155.8 (C5), 177.8 (C2). - IR (nujol): 1658, 1680 (sh).

3a,7a-Dihydro-3-isopropyl-7-nitro-2-phenyloxazolo[4,5-blpyridin-3-ium hexachloroantimonate (5p)

From $1 \mathrm{c}(4.81 \mathrm{~g}, 10 \mathrm{mmol})$ and $20(1.40 \mathrm{~g}, 10 \mathrm{mmol})$; method B. After stirring at $0^{\circ} \mathrm{C}$ for 45 min and filtration of the reaction mixture an oil was precipitated at $0^{\circ} \mathrm{C}$ by slow addition of $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$. The precipitate was stirred at $0^{\circ} \mathrm{C}$ for lh in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$. Removing the solvent and drying the residue afforded a yellow foam, which solidified to a yellow powder $(5.04 \mathrm{~g}, 81 \%)$ on stirring at $0^{\circ} \mathrm{C}$ for 1 h in pentane (100 ml); m.p. $85-100^{\circ} \mathrm{C}$ (dec.).
$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{Cl}_{6} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Sb}(620.8) .-{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}, 263$ $\mathrm{K}): 1.64(\mathrm{~d}, J=6.5), 1.71\left(\mathrm{~d}, \mathrm{~J}=6.7\left(\mathrm{CH}_{3}\right), 4.72\right.$ (sept, $J=6.7$) $(\mathrm{CH}), 6.35(\mathrm{~d}, J=11.3, \mathrm{H} 7 \mathrm{a}), 6.77$ (dd, $J=2.6,11.3, \mathrm{H} 3 \mathrm{a})$, 7.58 (d, $J=3.6, \mathrm{H} 6$), $7.67-7.95$ (phenyl), 8.40 (dd, $J=2.6,3.5$, H5). - ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}, 263 \mathrm{~K}\right): 20.2,23.2\left(\mathrm{CH}_{3}\right)$, $55.4(\mathrm{CH}), 72.3,79.1$ (C3a, C7a), 120.6, 124.2, 130.8, 131.7, 137.5, 145.5 (C6, C7, aryl), 155.5 (C5), 173.2 (C2). - IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 1555,1576,1591,1600(\mathrm{sh}), 1607(\mathrm{sh})$.

2-(N-Methylacetamido)pyridinium hexachloroantimonate (6a)

A solution of $\mathbf{5 a}(4.86 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(40 \mathrm{ml})$ was boiled under reflux for 3 h . Cooling to $23^{\circ} \mathrm{C}$ and slow addition of $\mathrm{CCl}_{4}(50 \mathrm{ml})$ to the black solution afforded a redbrown powder ($3.70 \mathrm{~g}, 76 \%$), which was reprecipitated from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml}) / \mathrm{MeCN}(10 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$ to give a yellow powder ($2.96 \mathrm{~g}, 61 \%$); m.p. $195-199^{\circ} \mathrm{C}$ (dec.).
$\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{OSb}(485.7) .-{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}\right): 2.51$, $3.58\left(\mathrm{CH}_{3}\right), 7.69(\mathrm{~m}, 2 \mathrm{H}), 8.40-8.56(\mathrm{~m}, 2 \mathrm{H}$, aryl), 15.3 (br NH). - ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}\right): 25.9,37.2\left(\mathrm{CH}_{3}\right), 117.1$
(C3), 122.0 (C5), 139.0 (C4), 148.6, 151.5 (C6, C2), 178.4 (CO). - IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 1675,1630,1600$.

2-(N-Methylacetamido)-3-methylpyridinium hexachloroantimonate ($\mathbf{6 f}$)

A solution of $5 \mathbf{f}(5.00 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(100 \mathrm{ml})$ was boiled under reflux for 3 h . Evaporation of the solvent and precipitation of the residue from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml}) / \mathrm{MeCN}$ $(15 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(300 \mathrm{ml})$ furnished a yellow powder $(4.50 \mathrm{~g}$, 90%); m.p. 182-187 ${ }^{\circ} \mathrm{C}$ (dec.).
$\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{OSb}(499.7)$. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}, 323 \mathrm{~K}\right):$ $2.11 \mathrm{br}, 2.43,3.33$ (br) $\left(\mathrm{CH}_{3}\right), 7.92(\mathrm{~m}, 1 \mathrm{H}), 8.53(\mathrm{~m}, 2 \mathrm{H}$, aryl), 12.07 (br, NH). $-{ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}, 323 \mathrm{~K}$): 17.0, 22.2, 37.2 (br, CH_{3}), 127.1, 138.4, 141.0 (br), 149.7 (br), 152.3, 171.8 (br, aryl, CO). - IR (KBr): 1606, 1622 sh, 1648.

2-(N-Methylacetamido)-5-methylpyridinium hexachloroantimonate ($6 \mathbf{g}$)

A solution of $5 \mathrm{~g}(5.00 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(100 \mathrm{ml})$ was boiled under reflux for 1 h . Cooling and slow addition of $\mathrm{Et}_{2} \mathrm{O}(250 \mathrm{ml})$ afforded a yellow powder ($4.13 \mathrm{~g}, 83 \%$); m.p. $183-190^{\circ} \mathrm{C}$ (dec.).
$\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{OSb}$ (499.7). - ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}$): 2.46, $2.47,3.53\left(\mathrm{CH}_{3}\right), 7.58$ (d, $J=9.0, \mathrm{H} 3$), 8.22 (br, m, H6), 8.33 (br, m, H4). - ${ }^{1 B} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}$): $17.8,25.7,37.2$ $\left(\mathrm{CH}_{3}\right), 116.9(\mathrm{C} 3), 133.3,137.7,149.6$ (2C?) (C2, C4, C5, C6), $177.9(\mathrm{CO})$. - IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$): $1556,1599,1644,1681$.

2-(N-Isopropylacetamido5-methylpyridinium hexachloroantimonate ($\mathbf{6 h}$)

A solution of $\mathbf{5 h}(5.28 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{MeCN}(30 \mathrm{ml})$ was boiled under reflux for 3 h . Evaporation of the solvent and precipitation of the residue from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml}) / \mathrm{MeCN}(30$ $\mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(200 \mathrm{ml})$ furnished a colorless powder $(4.63 \mathrm{~g}, 88 \%)$; m.p. $210-212^{\circ} \mathrm{C}$.
$\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{OSb}(527.7)$. - ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}\right): 1.18$ (d, $J=6.8$), 2.00, $2.59\left(\mathrm{CH}_{3}\right), 4.73$ (sept, $\left.J=6.8, \mathrm{CH}\right), 7.81(\mathrm{~d}$, $J=8.3, \mathrm{H} 3$), 8.53 (m, H4, H6), 9.63 (br, NH). - ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}\right): 18.4,21.3(2 \mathrm{C}), 23.4\left(\mathrm{CH}_{3}\right), 51.0(\mathrm{CH}), 128.9$, $139.6,143.2$ (br), 145.5 (br), 151.2 (aryl), 170.9 (CO). - IR $(\mathrm{KBr}): 1563,1601,1626,1673$.

2-(N-Isopropylbenzamido)-5-methylpyridinium hexachloroantimonate (6i)

From $5 \mathbf{i}(5.90 \mathrm{~g}, 10 \mathrm{mmol})$ as described for $\mathbf{6 h}$. Precipitation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml}) / \mathrm{Et}_{2} \mathrm{O}(130 \mathrm{ml})$ furnished a colorless powder ($5.60 \mathrm{~g}, 95 \%$); m.p. $160-162^{\circ} \mathrm{C}$.
$\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{OSb}$ (589.8). $-{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}$): 1.30 (d, $J=6.8$), $2.48\left(\mathrm{CH}_{3}\right), 4.81(\mathrm{sept}, J=6.8, \mathrm{CH}), 7.36-7.47$ (phenyl), 7.78 ($\mathbb{d}, J=8.3, \mathrm{H} 3$), 8.35 (m, H4, H6), 11.87 (br $\mathrm{NH}) .-{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}\right): 18.2,21.1(2 \mathrm{C})\left(\mathrm{CH}_{3}\right), 53.0$ (CH), 128.7, 128.9, 129.7, 132.0, 135.4, 138.9, 142.3.146.3, 150.7 (aryl), $170.8(\mathrm{CO})$. - IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 1596,1640,1658$, 1686.

2-(N-Methylacetamido)-1-methylbenzimidazolium hexachloroantimonate (9a)

A solution of 7 [39] ($1.48 \mathrm{~g}, 10 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was
added dropwise to a cold $\left(-25^{\circ} \mathrm{C}\right)$ suspension of $1 \mathbf{1 a}(3.91 \mathrm{~g}$, 10 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$. After stirring at $-25^{\circ} \mathrm{C}$ for 10 $\min \mathrm{CCl}_{4}(100 \mathrm{ml})$ was added. The oily precipitate was crystallized at $-15^{\circ} \mathrm{C}$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml}) / \mathrm{MeCN}(4 \mathrm{ml}) /$ $\mathrm{CCl}_{4}(100 \mathrm{ml})$ to give a colorless powder ($4.88 \mathrm{~g}, 91 \%$); m.p. $178-180^{\circ} \mathrm{C}$.
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{Cl}_{6} \mathrm{~N}_{3} \mathrm{OSb}$ (538.7). - ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}$): 2.28 (br), 3.48 (br), $3.85\left(\mathrm{CH}_{3}\right), 7.65-7.80$ (aryl), 12.0 (br, NH). $-{ }^{13} \mathrm{CNMR}\left(\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}\right): 22.7,33.1,38.0\left(\mathrm{br}, \mathrm{CH}_{3}\right), 114.0$, $115.1,127.7,128.3,129.1,132.0$ (aryl), 146.8, 172.1 (br NCN, CO $)$ - $-\operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 1724$.

2-(N-Isopropylacetamido)-1-methylbenzimidazolium hexachloroantimonate (9b)

From 1 b ($4.19 \mathrm{~g}, 10 \mathrm{mmol}$) as described for 9 a . After stirring at $-25^{\circ} \mathrm{C}$ for $10 \mathrm{~min} \mathrm{Et}_{2} \mathrm{O}(200 \mathrm{ml})$ was added dropwise. Stirring at $23^{\circ} \mathrm{C}$ for 30 min afforded a yellow precipitate, which was reprecipitated from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml}) / \mathrm{MeCN}(4 \mathrm{ml})$ / $\mathrm{Et}_{2} \mathrm{O}(300 \mathrm{ml})$ to furnish a pale yellow powder $(4.60 \mathrm{~g}, 81 \%)$; m.p. $158-162^{\circ} \mathrm{C}$.
$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{Cl}_{6} \mathrm{~N}_{3} \mathrm{OSb}(566.8) .-{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}$): 1.28 (br, d, J=6.7), 2.09 (br, 3.94) ($\left.\mathrm{CH}_{3}\right), 4.72$ (sept, $J=6.7, \mathrm{CH}$), 7.69-7.90 (aryl), 9.24 (br, NH). - ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{CN} / \mathrm{TMS}$) : 21.2 (br), 23.0, 32.7, CH_{3}), $53.2(\mathrm{CH}), 114.7,115.7,128.3$, $129.5,132.4$ (aryl), $143.9,170.8(\mathrm{NCN}, \mathrm{CO})$. - IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 1703, 1717 (sh).

References

[1] K. Bast, M. Christl, R. Huisgen, W. Mack, Chem.Ber. 105 (1972) 2825
[2] M. S. Chang, J. U. Lowe, J. Org. Chem. 32 (1967) 1577
[3] S. Morrocchi, A. Ricca, L.Velo, L., Tetrahedron Lett. 8 (1967) 331
[4] A. Dondoni, G. Barbaro, Gazz.Chim. Ital. 105 (1975) 701
[5] A. K. M. M. Hoque, W. K. Lee, H. J. Shine; D.-C. Zhao, J. Org. Chem. 56 (1991) 1332
[6] M.-G. A. Shvekhgeimer, O. S. Kartseva, K. I. Kobrakov, N. G. Popandopulo, Khim. Geterotsikl. Soedin. 29 (1993) 402
[7] H. Quast, L. Bieber, Tetrahedron Lett. 17 (1976) 1485
[8] H. Quast, L. Bieber, G. Meichsner, Chem. Ber. 120 (1987) 469
[9] B. Carboni, R. Carrié, Tetrahedron 40 (1984) 4115
[10] R.Huisgen, Angew. Chem. 92 (1980) 979; Angew. Chem. Int. Ed. Engl 19 (1980) 947
[11] L. A. Lee, E. V. Crabtree, J. U. Lowe, M. J. Cziesla, R. Evans, Tetrahedron Lett. 6 (1965) 2885
[12] D. N. Kevill, F. L.Weitl, J. Org. Chem. 35 (1970) 2526
[13] R. Abu-El-Halawa, P. B. Shrestha-Dawadi, J. C. Jochims, Chem.Ber. 126 (1993) 109
[14] Ya. D. Samuilov, S. E. Solov'eva, A. I. Konovalov, Zh. Obshch. Khim. 50 (1980) 138
[15] P. H. H. Hermkens, J. H. v. Maarseveen, C. G. Kruse, H. W. Scheeren, Tetrahedron 44 (1988) 6491
[16] Y. Yu, M. Ohno, S. Eguchi, J. Chem. Soc Chem. Commun. 1994, 331
[17] R. A. Abramovitch, G. M. Singer, J. Am. Chem. Soc.

91 (1969) 5672
[18] R. A. Abramovitch, R. B. Rogers, Tetrahedron Lett. 12 (1971) 1951
[19] W. E. Parham, K. B. Sloan, Tetrahedron Lett. 12 (1971) 1947
[20] R. A. Abramovitch, G. M. Singer, J. Org. Chem. 39 (1974) 1795
[21] R. A. Abramovitch, R. B. Rogers, J. Org. Chem. 39 (1974) 1802
[22] R. A. Abramovitch, R. B. Rogers, G. M. Singer, J. Org. Chem. 40 (1975) 41
[23] R. A. Abramovitch, M. N. Inbasekaran, S. Kato, G. M. Singer, J. Org. Chem. 41 (1976) 1717
[24] R. A. Abramovitch, I. Shinkai, R.Van Dahm, J. Heterocycl. Chem. 13 (1976) 171
[25] R. A. Abramovitch, I. Shinkai, Acc. Chem. Res. 9 (1976) 192
[26] T. Hisano, M. Ichikawa, T. Matsuoka, H. Hagiwara, K. Muraoka,T. Komori, K. Harano, Y. Ida, A. T. Christensen, Chem. Pharm. Bull. 27 (1979) 2261
[27] T. Hisano, T. Matsuoka, K. Tsutsumi, K. Muraoka, M. Ichikawa, Chem. Pharm. Bull. 29 (1981) 3706
[28] T. Hisano, T. Matsuoka, K. Fukunaga, M. Ichikawa, Chem. Pharm. Bull. 30 (1982) 3776
[29] Y. Tagawa, N. Honjo, Y. Goto, T. Chiba, T. Kato, Chem. Pharm. Bull. 31 (1983) 2269
[30] T. Matsuoka, M. Shinada, F. Suematsu, K. Harano, T. Hisano, Chem. Pharm. Bull. 32 (1984) 2077
[31] A. F. Hegarty, Acc. Chem. Res. 13 (1980) 448
[32] A. F. Hegarty, M. T. McCormack, G. Ferguson, P. J. Roberts, J. Am. Chem. Soc. 99 (1977) 2015
[33] J. E. Johnson, S. C. Cornell, J. Org. Chem. 45 (1980) 4144
[34] Details of the crystal structure determination may be obtained from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, Federal Republic of Germany, on quoting the dispository number CSD-59191, the names of the authors, and the journal citation.
[35] M. J. S. Dewar, C. Jie, J. Yu, Tetrahedron 49 (1993) 5003
[36] MOPAC program, version 6.0, J. J. Stewart, QCPE \# 455. The calculations were carried out with complete optimization of all bond lengths, bond angles, and dihedral angles.
[37] P. B. Shrestha-Dawadi, J. C. Jochims, Synthesis 1993, 426
[38] J. C. Jochims, R. Abu-El-Halawa, I. Jibril, G. Huttner, Chem. Ber. 117 (1984) 1900
[39] S. Takahashi, H. Kano, Chem. Pharm. Bull. 11 (1963) 1375

Address for correspondence:
Prof. Dr. Johannes C. Jochims,
Universität Konstanz, Fakultät für Chemie
Postfach 5560-M 733
D-78434 Konstanz, Germany

